Some integration is the inverse differentiation; the integrals of some elementary functions follow from the standard results of differential calculus. Following are the few examples of integral trigonometric functions.
Question: - Evaluate
-
∫ cos ^2 2 x dx
-
∫ sin ^3 x dx
-
∫ sin 3 x sin 4 x d x
Solution: -∫ cos ^2 2 x dx = ½ ∫ 2 cos ^2 2x dx
= ½ ∫ (1 + cos 4 x)
= ½ [∫ dx + ∫ cos 4x]
= ½ [ x + (sin 4x)/4] + c Where c is a constant.
2.Since, sin 3 x = 3 sin x – 4 sin ^3 x,
Therefore, 4 sin ^3 x = 3 sin x – sin 3 x
Hence, ∫ sin ^3 x dx = ¼ ∫ 4 sin ^3 x dx
= ¼ ∫ (3 sin x – sin 3 x) dx
= ¼ [3 ∫ sin x dx - ∫ sin 3 x dx]
= ¼ [3 (- cos x) – (- cos 3 x / 3) ] + k
= -3/4 cos x + 1 / 12 cos 3 x + k
3.∫ sin 3 x sin 4 x d x = ½ ∫ 2 sin 3 x sin 4 x d x
= ½ ∫ (cos x – cos 7 x) d x
= ½ [∫ cos x dx - ∫ cos 7 x dx]
= ½ [sin x – sin 7x / 7] + k